Thermolysis of sprayed suspensions for obtaining highly spinel ferrite nanoparticles
نویسندگان
چکیده
منابع مشابه
Crystalization in Spinel Ferrite Nanoparticles
The enhanced interest of the researchers in nanoobjects is due to the discovery of unusual physical and chemical properties of these objects, which is related to manifestation of so-called ‘quantum size effects‘. These arise in the case where the size of the system is commensurable with the de-Brogli wavelengths of the electrons, phonons or excitons propagating in them.A key reason for the chan...
متن کاملAntibacterial properties of spinel ferrite nanoparticles
This book chapter is organized into four major parts. Firstly, it will cover an introduction of using spinel ferrite nanoparticles in biomedical applications, including the antibacterial properties. The second part will provide an overview of the structure and magnetism of spinel ferrites. The third part will focus on the preparation of cobalt ferrite and transition metal substituted cobalt fer...
متن کاملEpitaxial growth of highly-crystalline spinel ferrite thin films on perovskite substrates for all-oxide devices
The potential growth modes for epitaxial growth of Fe3O4 on SrTiO3 (001) are investigated through control of the energetics of the pulsed-laser deposition growth process (via substrate temperature and laser fluence). We find that Fe3O4 grows epitaxially in three distinct growth modes: 2D-like, island, and 3D-to-2D, the last of which is characterized by films that begin growth in an island growt...
متن کاملStabilization of colloidal suspensions by means of highly charged nanoparticles.
We employ a novel Monte Carlo simulation scheme to elucidate the stabilization of neutral colloidal microspheres by means of highly charged nanoparticles [Proc. Natl. Acad. Sci. U.S.A. 98, 8950 (2001))]]. In accordance with the experimental observations, we find that small nanoparticle concentrations induce an effective repulsion that prevents gelation caused by the intrinsic van der Waals attr...
متن کاملHigh pressure Raman spectroscopy of spinel-type ferrite ZnFe2O4
An in-situ Raman spectroscopic study was conducted to explore the pressure induced phase transformation of spinel-type ferrite ZnFe2O4. Results indicate that ferrite ZnFe2O4 initially transforms to an orthorhombic structure phase (CaFe2O4polymorph) at a pressure of 24.6 GPa. Such a phase transformation is complete at 34.2 GPa, and continuously remains stable to the peak pressure of 61.9 GPa. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Belarusian State University. Chemistry
سال: 2019
ISSN: 2617-3980,2520-257X
DOI: 10.33581/2520-257x-2019-1-14-21